
History 1970s

- Microprocessors were Becoming Ubiquitous
 - Toys
 - Mattel Big Track-late 70s
 - Dual opposed Wheel
 - Magnetic clutch
 - Programmable
 - Start of Hobby Computing
 - Apple][
 - Commodore PET
 - Radio Shack TRS-80
 - COSMAC ELF

My First Robot 1979

- Best Recollection
 - Bigtrack Chassis
 - Wire-wrapped RCA 1802 ELF
 - Bumper Switches
 - 2N2222 Motor drivers
 - Built EPROM programmer
 - 5V CPU
- Map room on TV screen
 - Built in video PIXIE controller

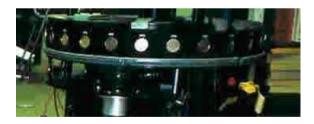
Denning Mobil Robotics 1985

• Autonomous

- Self charging
 - Align and interface with base station
- Able to plan path from room to room
 - Dead reckoning
 - IR beacons
- Avoid obstacles
- Sensors
 - Infrared
 - Ultrasonic
- Command Driven
 - Go to location on demand

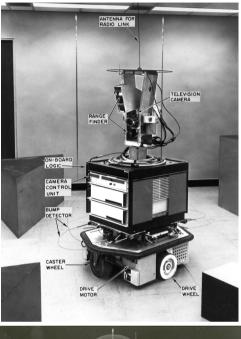
DMR, Continued

- Prototype
 - Ultrasonic
 - Motor Control
 - Dual opposed wheels
 - **Z-80**
- Sentry
 - Syncro-Drive
 - 3 wheel drive
 - 3 wheel steer
 - Industrial sized



Denning System

- Computers
 - 68000 Robot System
 - OS9
 - STD-BUS
 - Standard before IBM ISA
 - Z-80 Expert Systems
 - STD-BUS
 - Ultrasonic Ring
 - Motor Control
 - Radar
 - Other
- RS-232 Serial Bus
 - Multi-drop network
 - Software Protocol


Why is Denning Still Important?


- A lot of innovation
 - Robotic Motion
 - Robotic Navigation
- Worked with university scientists
 - Hans Moravec
 - James Crowley
- Still Relevant Today
 - Code obsolete
 - System obsolete
 - Accomplishments Still Hard to Duplicate
 - Amazing for its time
 - Research still relevant and available on internet

Robots of the Past

- Shakey
 - Vision
 - Object Avoidance
- Kludge
 - Robot Mobility
 - 3 wheel drive
 - 3 wheel steer
- ODEX-I
 - Spider
 - All terrain walker
- HERO
 - Hobby

Robots of Today

- Vgo
 - Mobile teleconference
 - Linux PC Robot and Skype?
- White Box
 - Next Generation HERO
- Roomba
 - Domestic appliance
- Aibo
 - Cyberdog? Really?
 - Doctor Who K-9?

• Yes, I know its not new

- Novel application
 - Forced fit
 - Better ways of accomplishing goal
- Cost/Benefit: \$6000
 - 12 laptops
 - Redundancy
 - Reliability
 - Won't get stuck/lost
 - Batteries
- LinuxPCRobot with Skype
 - Small VGA screen

White Box

- The latest generation of HERO
 - HE-ROBOT
 - White Box PC-ROBOT
- PC On Wheels
- Stepper Motors
 - Poor torque
- Web Cam
- Cost
 - Chassis with no computer \$4995 (robotshop.com)
 - Chassis with Mini-ITX: \$5795
 - \$800 for a motherboard?

Self Parking Cars

- Early adopters
 - More of a novelty than a reliable feature
- Algorithmic Simplification
 - Rigid "well known" problem solution
 - Driver controls gas and brake
 - Easily confused
 - Theory meets practice again
 - Object avoidance
 - Try a snow bank
- Problematic
- Cool beginning none the less
 - A good step forward

Blue Sky Projects

- Driver-less Vehicles
 - Google's Automated Car
 - DARPA Challenge
- Years from now
 - Liability Insurance alone!
- Would YOU trust your life?
 - Linux?
 - MS-Windows?
- Prediction
 - We are decades from driverless cars on populated roads
 - Research will augment safety systems

Holy Grail: Artificial Intelligence Real AI vs Expert Systems

- What is Al
 - Machine thinking
- Is Google Al
- Is Amazon's recommendations?
- Is Watson?
- Is a self parking car?
- What is AI?
 - Depends on who you ask
 - Small AI vs Big AI
 - Intelligent tasks
 - _ Intelligence
- Robots need to think
 - We need to understand what thinking is
 - This is what it is really all about

State Of the Art

- Some very cool stuff
- Rest single purpose/conceptual
 - Facial Expression
 - Making Humans Comfortable
 - Mechanical Models
 - Walkers
 - Segway
 - Fembot
 - Roomba
 - Ping Pong
- Lots of Advancement, but..
 - How far have we come?
 - Is any of it "intelligent?"

Is this 25 years worth of Innovation?

- Roomba is little more than a BigTrack with a broom
- Segway is a feat of process control magic, but hardly a robot.
- The Walking Robots are more centered on structure and automation.
- Focus seems to be on mechanics, aesthetics, and mimicking human behavior.
- Self parking cars, don't, not really
- Researchers are still trying to nail down navigation and object avoidance in an organic environment
- Hobbyists and Engineers in their garage or basements can still impact state of the art.
- Robotics is the ultimate AI platform!

Problem with Robotics Diverse Set of Disciplines

- Many Different Disciplines
 - Electrical/Electronics
 - Digital/Computer I/O
 - Analog Motor Amplifier/Drivers
 - Analog Sensors
 - Power Supplies
 - Efficiency
 - Mechanics
 - Chassis
 - Stability
 - Strength
 - Movement
 - Weight

Diversity, cont.

- Computer Science
 - Warning! Programmer with a screwdriver
 - real-time or near real-time techniques
 - High level process control
 - Low level Device I/O
 - Math and logical concepts
- Computer Infrastructure
 - Administration
 - Configuration
 - troubleshooting
 - Software
 - Hardware
 - Software and Hardware

Problem with Robotics Cost

- People are very generalized, machines tend not to be.
- Its expensive to make a machine to do compound tasks
 - Robots usually cost more than the task is worth
 - Humans are cheap
 - \$70K/year for 24x7 humans
 - "Man is the best computer we can put aboard a spacecraft, and the only one that can be mass produced with unskilled labor" Werner von Braun
 - You can steal a robot
 - You can sell robot parts
- Durability and Reliability
 - All robots today are unreliable
 - Require human assistance
 - Require maintenance
- Robots are dumber than the dumbest people.

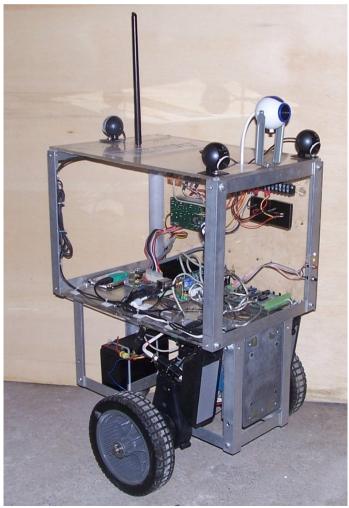
Problem with Robotics Environment

- The real problem is that robots are ill suited for an organic environment
 - Machines tend to work better in an environment intended for them.
 - Car's need roads
- Robots and environments could be managed.
 - R2D2
 - Impractical
 - Special interfacing
 - bluetooth?
 - I/R?
 - Sorry, You can't talk about robotics without mentioning R2D2 at least once
 - Yes I know its not new

Problem with Robotics The 3D World is Tricky

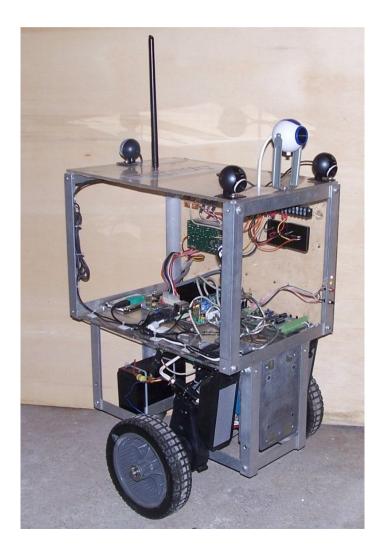
- Art vs Science
 - Engineering
 - Theory is Important
 - _ Just a start
 - Exceptions tend to be bigger than theory
 - Trial and Error
- Gasp, AGILE
 - Iteration
 - Experimentation
 - Learn as you are doing
 - _ The sum greater than the pieces
- Try to visualize how you solve the problems you want the robot to solve

Real World Example Odometry: Differential Wheel Motion


- Wheels not infinitely thin
 - Radius calculations need to be fuzzy
 - Wheel width and tread will cause path inconsistency even on a perfect surface
- Surface not consistent
 - Dust, dirt, objects on floor, and wheel slip
 - Changing Surfaces, rugs, mats, etc.
- Power not infinite
 - Rolling over object requires change in current/torque
 - Current not infinite
 - Motor's power limited
 - Even if enough power is available, motor's internal resistance limits torque
- It will NEVER work like a simulation
 - 3D World has too much random
- Need positional feedback separate from motion system

Linux PC Robot

• Why?


• Its fun

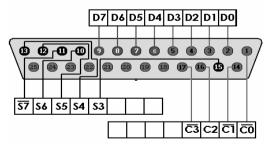
- Relatively inexpensive
 - Less than \$500 in parts
 - WhiteBox Robot costs \$5000~\$7000
 - Vgo costs \$6000
- Hope to spur innovation
 - Hobbyist
 - electronics
 - computers
- Can be used to address the real problems
 - Navigation
 - Object avoidance
 - Goal seeking

Linux PC Robot Design Goals

- Mostly COTS Consumer Off The Shelf
 - Standard Motherboard
 - Linux
 - Boot Disk
 - I/O Interface Card
 - Power Supply
 - Mouse Motor Encoder
 - Motor Amplifier
 - Battery
 - Networking

Design Goals, cont.

- Standard Linux development Environment
- PID Implementation
 - No special real time kernel
 - Tolerant of time period variation
 - No separate PIC development
- Joystick Interface
 - For manual operation
- Kids Ride Around Car
- Common materials
- Easy to build and augment

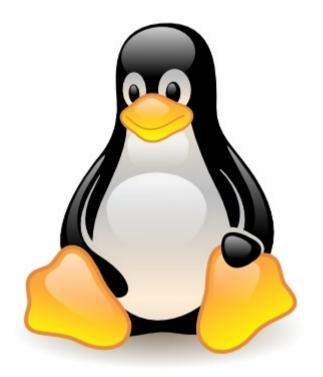


Design Goals, cont. Use Standards

- Use standard interfaces and devices
 - Reduce development time and effort
 - Lower cost
 - No need to re-invent wheel
 - An old mouse is just a couple encoders
 - And encoders can look like mice!
 - A PS/2 port is just a serial port
 - A printer port is just an I/O port connector
 - A keyboard is just a bunch of buttons
 - Lots of existing utilities
 - A "standard" device can test your hardware
 - Existing libraries simplify development
 - RIP: ISA bus

Linux PC Robot Problems

- One of a kind issues
 - Like custom cars!
 - No one to ask
 - Devices not meant for "that"
 - Thinking in analogy
 - How is this problem like another?
- It's not a server
 - Or a desktop or a laptop
- Not all things work as expected
- Shouldn't need a keyboard and display
- Getting to 100% wireless, a chore
- Networking issues across sites
 - wireless


Standard Motherboard

- Advantages
 - Standard Parts
 - Multiple Vendors
- Disadvantages
 - Power consumption
 - Form Factor
 - I/O
 - No built in i/o
 - No counter timers
- 8510M0
 - Intel Atom Dual Processor
 - Dual CPU
 - Hyper-threading
 - Cheap

Linux

- Swiss Army Knife
 - Server version
 - No GUI needed
 - Not usually anyway
 - Smaller footprint
 - Networking
 - Wireless
 - External antenna
 - Device support
 - USB
 - Lots and lots of utilities
 - Speech
 - Player/Stage
 - Ubuntu 10.04 LTS

Boot Disk and Storage

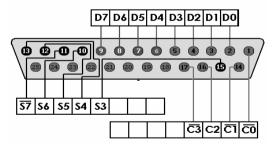
- Standard Hard Disk
 - Shock Sensitivity
- SSD Hard Disk
 - Expensive
 - Probably best choice
- Compact Flash
 - cheap
 - Mini-IDE/SATA interface
 - CF Adapter
 - More similar to embedded
- USB Stick
 - Requires Motherboard Support
 - Most have it these days
 - Not always reliable

Power Supply

- http://www.mini-box.com/DC-DC
- M3-ATX-HV 95W \$65
- Efficiency
 - Computer probably uses more power than motors
 - PCs not very efficient, assume 110V power cord
- ATX requirements
 - Lots of current!
 - 3.3V, 5V, 12V,-12,-5
- Not simply power
 - Power on (16)
 - Power Good (8)

Battery

- Standard "SLA"
 - Gell Type
 - Cheap
 - Heavy, low Power to Weight Ratio (PWR)
- NiMH
 - Light, better PWR
 - More expensive
- Lithium-ion
 - Lighter, even better PWR
 - Even more expensive
 - Potentially dangerous still


I/O Interface Cards

- Peripheral
 - Velleman USB K8055
 - Vellemen Parallel/I2C K8000
- PCI Bus
 - PCI-DIO24
- PC Parallel Port
 - 278/27A or 378/37A
 - Must be root
 - Instructions outb, inb
 - www.linuxpcrobot.org Has more information
- You Do It Electronics
- RIP: ISA Bus

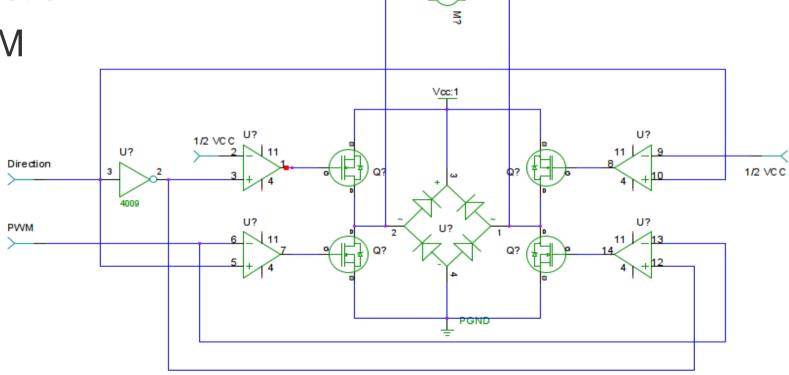
Joystick Interface

- Standard USB HID
- X/Y control
- 90% of I/O and interfacing done
 - Before IBM PC, needed two AD converters
 - IBM PC, time based R/C with comparator
 - Consumer USB units better than old Joystick port
- TCP/IP client/server
- virtual joystick

Stuff You Need to Build or Modify

- Motor Encoding System
 - PS/2 Mouse
- Motor Driver
 - H-Bridge
- Chassis
 - Keep the toy or Build a Frame
- Wheels
- Wiring Harness

Mouse Motor Encoder


- Standard device
 - 90% of I/O and interfacing done
- PS2 vs USB
 - PS2 polling
 - USB auto-send
 - Not suitable for motor encoder
- Response Time
 - slow
- Outstanding issues
 - Motor shaft too fast, have to move pickups
 - Ball Mice all but extinct
 - Arduino based replacement?

Motor Driver Custom Device

- H-Bridge
 - MOSFET
 - CMOS 12v logic
 - Direction
 - PWM

Chassis Kids Ride Around Toy

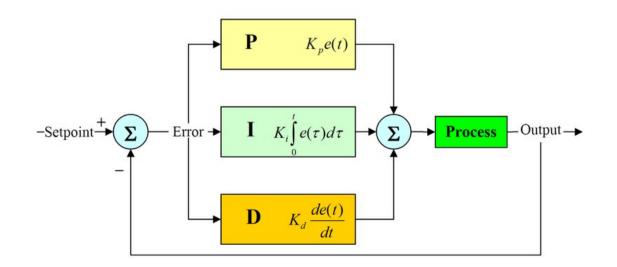
- Handle good size payload
 - 50~60 LBS
 - Toy R US or Craigslist
- 6v Motors
 - Must have two motors
 - _ Differential drive
 - Work well with controlled 12V
 - Cheap
 - Designed for basic efficiency
 - Not best
 - Not worst, automotive
- Don't under estimate toy technology
 - Www.Modifiedpowerwheels.com
 - Durable
 - Cheap

Chassis Alternatives

- Commercial
 - Affordable units very small
 - Not worth money
 - Unless you're rich or funded
 - Alternate Ideas
 - Wheel Chair
 - Very expensive, but cheaper than Vgo or WhiteBox
- Hybrid
 - Linux PC Robot
 - Fame and Toy Gear Motors
 - More flexible
 - Lighter than toy
- Smaller
 - Limited payload

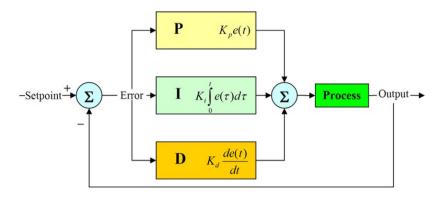
Home Depot Source of Materials and Inspiration

- Tools
 - Hacksaw
 - Drill
 - etc.
- Aluminum Framework
- 1/4/20 and hardware
- Lawn Mower Wheels
 - Rubber tread
- Hardware Store Engineering
 - Got a problem? Walk around and look at things
 - Just because plumbing doesn't mean it can't be structural.


Software Bringing Frankenstein to Life

- Must Haves
 - Motor Control
 - Www.linuxpcrobot.org
 - Resource not a product
 - Write your own
 - PID
 - Manual User Interface
- Cool Features available in more Linux Distros
 - Webcam Server
 - Video Conferencing
 - Motion Detection
 - Speech Synthesizer

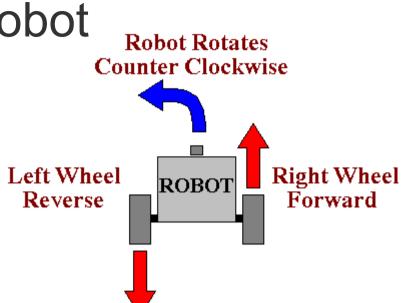
PID


Proportional Integral Derivative

- Gain based on instantaneous positional error (Proportional)
- Error is accumulated over time to reduce over-all positional error (Integral)
- The rate of change is compared for each cycle to reduce over-shoot and under-shoot (Derivative)

PID Implementation

- Real Time
- Measured Time
 - near real-time
 - not really
 - Pentium and higher on-chip high precision timer
- Real Time vs Measured Time
 - Mathematically more complex
 - Unreliable but recoverable
 - Probably good enough
 - Analog world
 - Wheel slip



Prototype

- What are you building?
 - Mechanical Platform?
 - Software Development Platform?
- Dual Opposed Wheels
- Syncro-drive
 - Kludge
- Walking
 - Asimo vs ODEX
- Others
 - flying
 - drive/steer
- It doesn't need to be pretty
 - Really, it doesn't need to be pretty!

Motion LinuxPCRobot

- Dual opposed wheels
 - Mechanically simple
 - tight control required
 - rotate
 - straight line

- one moves forward, one moves backward
 - Surprisingly confusing when you are writing software
- good enough for most tasks

Conclusion

- A lot of good problems left to solve
- Not expensive to start
 - A little time
 - A little money
 - A bunch of junk
- Computers hugely better today than 25 years ago
 - 64 bits vs 8bits
 - Gigabytes vs Kilobytes of RAM
 - Computers 1/10 the price for 1000x more power
 - Linux Free and probably the most flexible system available
- I/O devices easily available as never before
 - Cameras
 - Joysticks
 - Wireless networking

Wrap up

- Aren't you sick of computers yet?
 - Shouldn't they work for a living
 - Shouldn't they interact with the 3D world
- Do some 3D hacking!
 - Don't be afraid of a soldering Iron
 - Get yourself an oscilloscope
 - Buy "The Art of Electronics"
 - Steal your daughter's barbie jeep and make it a robot
 - You know you want too
 - Have some fun

Resources

- http://www.linuxpcrobot.org
 - Source code and information
- http://www.mini-box.com
 - Small and mobile computing
- http://www.jameco.com
 - General electronics
- http://www.mpja.com
 - Electro-mechanical
 - Electronics
- http://www.digikey.com
- http://www.youdoitelectronics.com
- http://www.mwave.com